Mathématiques

Question

= A = (2x - 1)2 + (2x - 1) (x + 3). a. Développer et réduire A. b. Factoriser A. c. Calculer A pour x= 1/2 ; pour x= 0 réponse svp

2 Réponse

  • Réponse :

    bonjour

    Explications étape par étape :

    A = (2x - 1)2 + (2x - 1) (x + 3)

    a. Développer et réduire A.

    A= 4x²-4x+1 + 2x²+6x-x-3

    =6x²-2x-2

    b. Factoriser A.

    A=(2x - 1)2 + (2x - 1) (x + 3)

    =(2x-1) (2x-1+x+3)

    =(2x-1)(3x+2)

    c. Calculer A pour x= 1/2

    (2x1/2-1)(3x1/2+2)

    =0

    ;our x= 0

    A=(2x-1)(3x+2)

    (2x-1)(3x+2)=0

    le produit de 2 facteurs est nul si l'un des 2 produits est nul

    donc soit 2x-1=0 et x=1/2

    soit 3x+2=0 et x=-2/3

    les solutions sont x=1/2 ou x=-2/3

  • Réponse :

    Explications étape par étape :

    a)  A = (2x - 1)2 + (2x - 1) (x + 3)

            = 4x - 2 + 2x² + 6x - x - 3

            = 2x² + 9x - 5

    b)   A = (2x - 1)(2 + x + 3)

             = (2x - 1)(x + 5)

    c)   x= 1/2         2x² + 9x - 5      

                       =  2(1/2)² + 9(1/2) - 5   =   2(1/4) + 9/2 - 5  

                       =   1/2 + 9/2 - 10/2      =   0

       pour x= 0         (2x - 1)(x + 5)

                               = - 5

Autres questions