Mathématiques

Question

Exercice 10:
On considère la fonction f telle que f(x) = 2(x2 - x - 1). On a représenté ci-dessous la courbe représentative de cette fonction.
1) a. Calculer les images de -1;0 et 2 par la fonction f.
b. Par lecture graphique, vérifier la cohérence des résultats trouvés.
2) a.Par lecture graphique, conjecturer des antécédents de -2,5 et -0,5.
b. Vérifier cette conjecture par le calcul.
Vous pouvez m’aider SVP je dois le rendre pour demain
Exercice 10: On considère la fonction f telle que f(x) = 2(x2 - x - 1). On a représenté ci-dessous la courbe représentative de cette fonction. 1) a. Calculer le

1 Réponse

  • f(x) = 2(x² - x - 1)

    On a représenté ci-dessous la courbe représentative de cette fonction.

    1) a. Calculer les images de -1;0 et 2 par la fonction f.

    pour tout x l'image de x = f(x) = 2 (x² - x - 1)

    si x = -1, alors f(-1) = 2 [(-1)² - (-1) - 1]

    vous calculez - idem pour f(0) et f(-1)

    b. Par lecture graphique, vérifier la cohérence des résultats trouvés.

    image de -1 = ordonnée du point d'abscisse - 1 sur la courbe

    idem pour image de 0 et 2

    2) a.Par lecture graphique, conjecturer des antécédents de -2,5 et -0,5.

    on vous donne l'ordonnée de points - vous cherchez leurs abscisses x

    b. Vérifier cette conjecture par le calcul.

    soit résoudre f(x) = -2,5 et f(x) = - 0,5

    donc

    trouver x pour que 2(x² - x - 1) = - 2,5

    x² - x - 1 = -1,25

    x² - x + 0,25 = 0

    Δ = (-1)² - 4*1*0,25 = 0

    => racine double => 1 seule solution => 1 seul antécédent

    x = - (-1) / 2*(1) = 1/2 = 0,5

    on a bien le point (0,5 ; -2;5) sur la courbe

    idem pour le second